Copied to
clipboard

G = C23.410C24order 128 = 27

127th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.16C23, C23.410C24, C22.2052+ 1+4, C425C412C2, (C22×C4).81C23, (C2×C42).50C22, C23.7Q859C2, C23.8Q864C2, C23.313(C4○D4), C23.11D432C2, (C23×C4).103C22, C24.C2268C2, C23.84C233C2, C23.23D4.28C2, (C22×D4).152C22, C23.83C2328C2, C23.63C2368C2, C22.19(C422C2), C2.20(C22.32C24), C2.31(C22.45C24), C2.C42.488C22, C2.55(C23.36C23), C2.40(C22.47C24), (C4×C22⋊C4)⋊15C2, (C2×C4).735(C4○D4), (C2×C4⋊C4).276C22, C2.17(C2×C422C2), C22.287(C2×C4○D4), (C2×C2.C42)⋊35C2, (C2×C22⋊C4).48C22, SmallGroup(128,1242)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.410C24
C1C2C22C23C24C23×C4C2×C2.C42 — C23.410C24
C1C23 — C23.410C24
C1C23 — C23.410C24
C1C23 — C23.410C24

Generators and relations for C23.410C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=cb=bc, e2=ba=ab, f2=b, ac=ca, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 484 in 241 conjugacy classes, 96 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C2×C2.C42, C4×C22⋊C4, C23.7Q8, C425C4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.11D4, C23.83C23, C23.84C23, C23.410C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C422C2, C2×C4○D4, 2+ 1+4, C2×C422C2, C23.36C23, C22.32C24, C22.45C24, C22.47C24, C23.410C24

Smallest permutation representation of C23.410C24
On 64 points
Generators in S64
(1 10)(2 11)(3 12)(4 9)(5 48)(6 45)(7 46)(8 47)(13 56)(14 53)(15 54)(16 55)(17 57)(18 58)(19 59)(20 60)(21 35)(22 36)(23 33)(24 34)(25 43)(26 44)(27 41)(28 42)(29 39)(30 40)(31 37)(32 38)(49 64)(50 61)(51 62)(52 63)
(1 23)(2 24)(3 21)(4 22)(5 29)(6 30)(7 31)(8 32)(9 36)(10 33)(11 34)(12 35)(13 43)(14 44)(15 41)(16 42)(17 50)(18 51)(19 52)(20 49)(25 56)(26 53)(27 54)(28 55)(37 46)(38 47)(39 48)(40 45)(57 61)(58 62)(59 63)(60 64)
(1 21)(2 22)(3 23)(4 24)(5 31)(6 32)(7 29)(8 30)(9 34)(10 35)(11 36)(12 33)(13 41)(14 42)(15 43)(16 44)(17 52)(18 49)(19 50)(20 51)(25 54)(26 55)(27 56)(28 53)(37 48)(38 45)(39 46)(40 47)(57 63)(58 64)(59 61)(60 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 33 46)(2 38 34 8)(3 29 35 48)(4 40 36 6)(5 12 39 21)(7 10 37 23)(9 30 22 45)(11 32 24 47)(13 63 25 19)(14 49 26 60)(15 61 27 17)(16 51 28 58)(18 55 62 42)(20 53 64 44)(41 57 54 50)(43 59 56 52)
(1 47 23 38)(2 39 24 48)(3 45 21 40)(4 37 22 46)(5 11 29 34)(6 35 30 12)(7 9 31 36)(8 33 32 10)(13 51 43 18)(14 19 44 52)(15 49 41 20)(16 17 42 50)(25 58 56 62)(26 63 53 59)(27 60 54 64)(28 61 55 57)
(1 50)(2 62)(3 52)(4 64)(5 13)(6 53)(7 15)(8 55)(9 49)(10 61)(11 51)(12 63)(14 45)(16 47)(17 23)(18 34)(19 21)(20 36)(22 60)(24 58)(25 39)(26 30)(27 37)(28 32)(29 43)(31 41)(33 57)(35 59)(38 42)(40 44)(46 54)(48 56)

G:=sub<Sym(64)| (1,10)(2,11)(3,12)(4,9)(5,48)(6,45)(7,46)(8,47)(13,56)(14,53)(15,54)(16,55)(17,57)(18,58)(19,59)(20,60)(21,35)(22,36)(23,33)(24,34)(25,43)(26,44)(27,41)(28,42)(29,39)(30,40)(31,37)(32,38)(49,64)(50,61)(51,62)(52,63), (1,23)(2,24)(3,21)(4,22)(5,29)(6,30)(7,31)(8,32)(9,36)(10,33)(11,34)(12,35)(13,43)(14,44)(15,41)(16,42)(17,50)(18,51)(19,52)(20,49)(25,56)(26,53)(27,54)(28,55)(37,46)(38,47)(39,48)(40,45)(57,61)(58,62)(59,63)(60,64), (1,21)(2,22)(3,23)(4,24)(5,31)(6,32)(7,29)(8,30)(9,34)(10,35)(11,36)(12,33)(13,41)(14,42)(15,43)(16,44)(17,52)(18,49)(19,50)(20,51)(25,54)(26,55)(27,56)(28,53)(37,48)(38,45)(39,46)(40,47)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,33,46)(2,38,34,8)(3,29,35,48)(4,40,36,6)(5,12,39,21)(7,10,37,23)(9,30,22,45)(11,32,24,47)(13,63,25,19)(14,49,26,60)(15,61,27,17)(16,51,28,58)(18,55,62,42)(20,53,64,44)(41,57,54,50)(43,59,56,52), (1,47,23,38)(2,39,24,48)(3,45,21,40)(4,37,22,46)(5,11,29,34)(6,35,30,12)(7,9,31,36)(8,33,32,10)(13,51,43,18)(14,19,44,52)(15,49,41,20)(16,17,42,50)(25,58,56,62)(26,63,53,59)(27,60,54,64)(28,61,55,57), (1,50)(2,62)(3,52)(4,64)(5,13)(6,53)(7,15)(8,55)(9,49)(10,61)(11,51)(12,63)(14,45)(16,47)(17,23)(18,34)(19,21)(20,36)(22,60)(24,58)(25,39)(26,30)(27,37)(28,32)(29,43)(31,41)(33,57)(35,59)(38,42)(40,44)(46,54)(48,56)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,48)(6,45)(7,46)(8,47)(13,56)(14,53)(15,54)(16,55)(17,57)(18,58)(19,59)(20,60)(21,35)(22,36)(23,33)(24,34)(25,43)(26,44)(27,41)(28,42)(29,39)(30,40)(31,37)(32,38)(49,64)(50,61)(51,62)(52,63), (1,23)(2,24)(3,21)(4,22)(5,29)(6,30)(7,31)(8,32)(9,36)(10,33)(11,34)(12,35)(13,43)(14,44)(15,41)(16,42)(17,50)(18,51)(19,52)(20,49)(25,56)(26,53)(27,54)(28,55)(37,46)(38,47)(39,48)(40,45)(57,61)(58,62)(59,63)(60,64), (1,21)(2,22)(3,23)(4,24)(5,31)(6,32)(7,29)(8,30)(9,34)(10,35)(11,36)(12,33)(13,41)(14,42)(15,43)(16,44)(17,52)(18,49)(19,50)(20,51)(25,54)(26,55)(27,56)(28,53)(37,48)(38,45)(39,46)(40,47)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,33,46)(2,38,34,8)(3,29,35,48)(4,40,36,6)(5,12,39,21)(7,10,37,23)(9,30,22,45)(11,32,24,47)(13,63,25,19)(14,49,26,60)(15,61,27,17)(16,51,28,58)(18,55,62,42)(20,53,64,44)(41,57,54,50)(43,59,56,52), (1,47,23,38)(2,39,24,48)(3,45,21,40)(4,37,22,46)(5,11,29,34)(6,35,30,12)(7,9,31,36)(8,33,32,10)(13,51,43,18)(14,19,44,52)(15,49,41,20)(16,17,42,50)(25,58,56,62)(26,63,53,59)(27,60,54,64)(28,61,55,57), (1,50)(2,62)(3,52)(4,64)(5,13)(6,53)(7,15)(8,55)(9,49)(10,61)(11,51)(12,63)(14,45)(16,47)(17,23)(18,34)(19,21)(20,36)(22,60)(24,58)(25,39)(26,30)(27,37)(28,32)(29,43)(31,41)(33,57)(35,59)(38,42)(40,44)(46,54)(48,56) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,48),(6,45),(7,46),(8,47),(13,56),(14,53),(15,54),(16,55),(17,57),(18,58),(19,59),(20,60),(21,35),(22,36),(23,33),(24,34),(25,43),(26,44),(27,41),(28,42),(29,39),(30,40),(31,37),(32,38),(49,64),(50,61),(51,62),(52,63)], [(1,23),(2,24),(3,21),(4,22),(5,29),(6,30),(7,31),(8,32),(9,36),(10,33),(11,34),(12,35),(13,43),(14,44),(15,41),(16,42),(17,50),(18,51),(19,52),(20,49),(25,56),(26,53),(27,54),(28,55),(37,46),(38,47),(39,48),(40,45),(57,61),(58,62),(59,63),(60,64)], [(1,21),(2,22),(3,23),(4,24),(5,31),(6,32),(7,29),(8,30),(9,34),(10,35),(11,36),(12,33),(13,41),(14,42),(15,43),(16,44),(17,52),(18,49),(19,50),(20,51),(25,54),(26,55),(27,56),(28,53),(37,48),(38,45),(39,46),(40,47),(57,63),(58,64),(59,61),(60,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,33,46),(2,38,34,8),(3,29,35,48),(4,40,36,6),(5,12,39,21),(7,10,37,23),(9,30,22,45),(11,32,24,47),(13,63,25,19),(14,49,26,60),(15,61,27,17),(16,51,28,58),(18,55,62,42),(20,53,64,44),(41,57,54,50),(43,59,56,52)], [(1,47,23,38),(2,39,24,48),(3,45,21,40),(4,37,22,46),(5,11,29,34),(6,35,30,12),(7,9,31,36),(8,33,32,10),(13,51,43,18),(14,19,44,52),(15,49,41,20),(16,17,42,50),(25,58,56,62),(26,63,53,59),(27,60,54,64),(28,61,55,57)], [(1,50),(2,62),(3,52),(4,64),(5,13),(6,53),(7,15),(8,55),(9,49),(10,61),(11,51),(12,63),(14,45),(16,47),(17,23),(18,34),(19,21),(20,36),(22,60),(24,58),(25,39),(26,30),(27,37),(28,32),(29,43),(31,41),(33,57),(35,59),(38,42),(40,44),(46,54),(48,56)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K2L4A4B4C4D4E···4V4W4X4Y
order12···22222244444···4444
size11···12222822224···4888

38 irreducible representations

dim111111111111224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+4
kernelC23.410C24C2×C2.C42C4×C22⋊C4C23.7Q8C425C4C23.8Q8C23.23D4C23.63C23C24.C22C23.11D4C23.83C23C23.84C23C2×C4C23C22
# reps1111113122118122

Matrix representation of C23.410C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000040
000004
,
100000
010000
001000
000100
000040
000004
,
030000
200000
000200
002000
000011
000004
,
020000
200000
003000
000300
000033
000002
,
400000
040000
000100
004000
000020
000013
,
010000
100000
001000
000100
000010
000001

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,1,4],[0,2,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,3,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C23.410C24 in GAP, Magma, Sage, TeX

C_2^3._{410}C_2^4
% in TeX

G:=Group("C2^3.410C2^4");
// GroupNames label

G:=SmallGroup(128,1242);
// by ID

G=gap.SmallGroup(128,1242);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,344,758,723,184,675]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c*b=b*c,e^2=b*a=a*b,f^2=b,a*c=c*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽